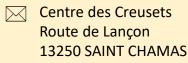
On-site calibration and verification of mass flowmeter for aerosol samplers

Lise Hégron, CT2M

lhegron@ct2m.fr

CT2M in figures


1993: creation

11 people

660 people trained in 2022

3074 masses calibrated in 2022

5 CIL organized in 2022

04 90 50 90 14

Training / Consulting / Audit

« Supporting companies and laboratories in their Quality and Metrology projects »

<u>Contact</u>: David BENHAMOU <u>dbenhamou@ct2m.fr</u>

+33 (0)6.78.00.10.26

« Actions de formation »

Proficiency Testing provider (PT)

« Organization of PT in accordance with ISO 17043 and with COFRAC accreditation for mass calibration from 1 mg to 20 kg »

<u>Contact</u>: Boris GEYNET <u>bgeynet@ct2m.fr</u>

+33 (0)6.83.94.60.87

Accreditation N° 1-7127 Scope available on www.cofrac.fr

Mass calibration until E2 class

« Calibration and verification of masses from 1 mg to 5 tons with COFRAC accreditation »

<u>Contact</u>: Anaïs LAMOUR <u>alamour@ct2m.fr</u>

+33 (0)4.90.50.90.14

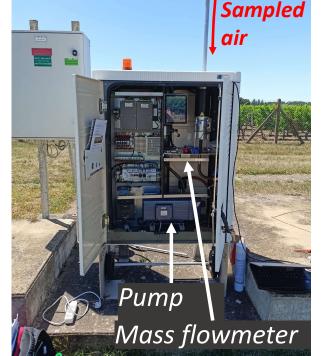
Accreditation N° 2-1292 Scope available on www.cofrac.fr

<u>Context</u>: Measurement of radioactivity in the environment

Measurement: global alpha / beta radioactivity index or gamma emitters in

environmental samplers

<u>Unit</u>: Bq/Nm³ (Normal Meter Cubed)


→ Volume of air

Aerosol sampler

Metrological traceability of the volume must be guaranteed

Mass flowmeter calibration (on-site)

Problems encountered by the company

Calibration laboratories of mass flowmeter are accredited "in laboratory" and not "on site" (aerosol sampler cannot be moved).

Studie

Internal calibration of mass flowmeter

Requirements of GEN REF 10 (COFRAC document based on ILAC P/10*)

Appropriate evidence for the technical competence to perform internal calibration and metrological traceability should include ISO 17025 requirements.

*ILAC Policy on Metrological Traceability of Measurement Results

Requirements of GEN REF 10 (COFRAC document based on ILAC P/10*)

Appropriate evidence for the technical competence to perform internal calibration and metrological traceability should include ISO 17025 requirements.

- 1) Metrological criteria
- 2) Calibration method of mass flowmeter (+ environmental conditions)
- 3) Calibration results
- 4) Calibration uncertainty
- 5) Statement of compliance

*ILAC Policy on Metrological Traceability of Measurement Results

1) Metrological criteria:

Requirements of the NF M 60-760* standard:

Requirement on:	Criteria	Value
Volume measurement of air sample	Relative uncertainty	< 5% (k=1)
Proper functioning of the flow control device	Deviation from the set point	±10%

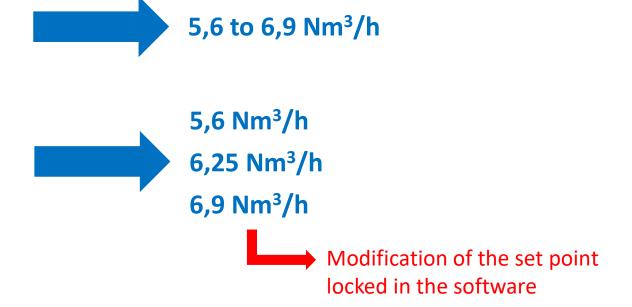
Company criteria: ±2%

^{*}NF M 60-760 (2017): Nuclear energy - Measurement of radioactivity in the environment - Air - Sampling of aerosols for measurement of radioactivity in the environment

2) Calibration method of mass flowmeter:

3 tests are carried out with a mass flowmeter standard:

- Flow calibration (in Nm³/h)
- Volume control (in Nm³)
- Control of flow regulation (in Nm³/h)
- → Time quantity is not calibrated because the internal clock error is insignificant.


2) Calibration method of mass flowmeter:

Measuring range:

- based on ±10% deviation criteria
- Set point: 6,25 Nm³/h

Calibration point:

- Flow calibration (in Nm³/h)
- Control of flow regulation (in Nm³/h)

2) Calibration method of mass flowmeter + environmental conditions

Environmental conditions:

- Air temperature between 15°C and 25°C
- Absence of strong winds
- Avoid humid periods

Operating mode:

- Flow calibration (in Nm³/h):
- Control of the flow regulation (in Nm³/h)
- Volume control (in Nm³)

10 measurements on each massflowmeter / 1 min:

- fm₁ to fm₁₀ for massflowmeter to calibrate
- fs₁ to fs₁₀ for massflowmeter standard

1 measurement at the beginning and 1 measurement at the end of the calibration $(V_1 + V_{10})$

3) Calibration results:

• Flow calibration (in Nm³/h)

Measurement bias « b_{flow} »

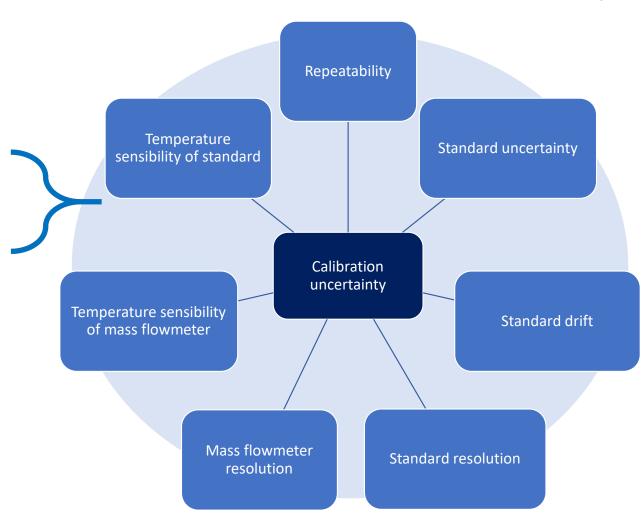
• Volume control (in Nm³)

Measurement bias « b_{vol} »

Control of flow regulation (in Nm³/h)

Deviation from the set point « d_{regul} »

4) Calibration uncertainty:


→ GUM methodology

- Flow calibration : U(b_{flow}) in Nm³/h
- Volume control : U(b_{vol}) in %

Results example:

Set point: 6,25 Nm³/h

- $U(b_{flow}) = 0.13 \text{ Nm}^3/\text{h}$
- $U(b_{vol}) = 2.1 \%$

5) Statement of compliance:

→ In relation to Maximum Permissible Error (MPE)

- Flow calibration : $|b_{flow}| + U(b_{flow}) \le MPE_{f,v}$
- Volume control : $|b_{vol}| + U(b_{vol}) \le MPE_{f,v}$
- Control of the flow regulation : $|d_{regul}| \le MPE_d$

5) Statement of compliance:

\rightarrow Determination of Maximum Permissible Error on flow and volume (MPE_{f,v})

• Criteria:

Requirement on:	Criteria	Value
Volume measurement of air sample	Uncertainty	< 5% (k=1)

• Evaluation of air sample volume uncertainty:

$$u_{rel}$$
(volume of air sample) < 5% (k=1) with $\begin{cases} MPE_{f,v} = 8\% \\ MPE_{d} = 2\% \end{cases}$

CONCLUSION

■ Development of an internal method for on-site mass flowmeter calibration :

- ✓ Validation of calibration method
- ✓ Evaluation of measurement calibration uncertainty
- ✓ Documentation and records for metrological traceability of measurement results
- ✓ Documentation and records for competence of personnel
- ✓ Documentation for facilities and environmental conditions

Areas of improvement :

- ✓ Software access
- ✓ Uncertainty evaluation
- ✓ Environmental condition control